Catalytic Carbon-Carbon σ-Bond Hydrogenation with Water Catalyzed by Rhodium Porphyrins

Ching Tat To, Kwong Shing Choi, and Kin Shing Chan*
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, The People's Republic of China

Supporting Information

Abstract

The catalytic carbon-carbon σ-bond activation and hydrogenation of [2.2]paracyclophane with water in a neutral reaction medium is demonstrated. The hydrogen from water is transferred to the hydrocarbon to furnish hydrogen enrichment in good yields.

Selective intermolecular catalytic carbon-carbon activation ${ }^{1}$ (CCA) with transition-metal complexes is challenging. Despite the fact that carbon-carbon bonds are generally weaker than carbon-hydrogen bonds, carbon-hydrogen activation ${ }^{2}$ (CHA) occurs predominantly because of the statistically more abundant and sterically more accessible natures of $\mathrm{C}-\mathrm{H}$ bonds in organic compounds. ${ }^{3}$ Examples of successful stoichiometric CCA in homogeneous solutions take advantage of ring strain relief, ${ }^{4 a, b}$ chelation assistance, ${ }^{1 \mathrm{~b}}$ or photochemical activation. ${ }^{4 c}$ Similar strategies have also been employed to achieve catalytic CCA of strained carbonyls ${ }^{5}$ or simple carbonyls assisted by chelation. ${ }^{6}$ Hydrogenolysis of $\mathrm{C}-$ C bonds catalyzed by transition metals has also been reported. ${ }^{7}$ However, these examples are limited to functionalized substrates.

Replacing hydrogen gas with water as the hydrogen donor in hydrogenation processes would be beneficial because of the reduced cost and increased safety. When coupled with the CCA of hydrocarbons, catalytic hydrogenation of carbon-carbon σ bonds in neutral media can be achieved (Scheme 1).

Scheme 1. Catalytic Hydrogenation of Carbon-Carbon σ Bonds Using Water

$$
\mathrm{R}^{\prime} \mathrm{R}^{\prime}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { catalyst }} \mathrm{R}-\mathrm{H}+\mathrm{R}^{\prime}-\mathrm{H}+1 / 2 \mathrm{O}_{2}
$$

We recently reported the stoichiometric CCA of cyclooctane 8 and water splitting by rhodium(II) porphyrin. ${ }^{9} \mathrm{We}$ envisioned that these two reactions could be coupled to achieve catalytic carbon-carbon σ-bond hydrogenation with water to provide hydrogen-enriched fuels. Herein we report our initial success using [2.2]paracyclophane (PCP) as the organic substrate.

Initially, a benzene- d_{6} solution of PCP, in the presence of $\mathrm{H}_{2} \mathrm{O}$, was reacted in the dark ${ }^{10}$ with $\mathrm{Rh}^{\text {III }}(\mathrm{ttp}) \mathrm{I}$ (ttp $=$ tetratolylporphyrinato dianion) and KOH as a convenient source of $\mathrm{Rh}^{\mathrm{II}}(\mathrm{ttp})$ via the $\mathrm{Rh}^{\mathrm{III}}(\mathrm{ttp}) \mathrm{OH}$ intermediate, which undergoes rapid elimination to give $\mathrm{H}_{2} \mathrm{O}_{2}$ as well. ${ }^{.}$Surprisingly, no benzylic CHA product of PCP was obtained. ${ }^{11}$ Instead, PCP
was catalytically converted to $4,4^{\prime}$-dimethylbibenzyl (1) in 83% yield (eq 1 and Table 1, entry 1). The benzylic carbon-carbon

Table 1. Catalytic Carbon-Carbon Bond Hydrogenation of PCP with Water

${ }^{a} \mathrm{~A} 79 \%$ yield of CH_{4} with respect to $\mathrm{Rh}^{\text {III }}(\mathrm{ttp})$ Me was formed.
σ-bond of PCP was catalytically hydrogenated. As $\mathrm{Rh}^{\mathrm{III}}(\mathrm{ttp}) \mathrm{Me}$ can undergo hydrolysis under neutral conditions to give $\mathrm{Rh}^{\text {III }}(\mathrm{ttp}) \mathrm{OH}$, which rapidly gives $\mathrm{Rh}^{\mathrm{II}}{ }_{2}(\mathrm{ttp})_{2},{ }^{12}$ we tested its catalytic ability as well. To our delight, PCP was catalytically hydrogenated to give a 78% yield of 1 in 54 h under neutral conditions when $10 \mathrm{~mol} \% \mathrm{Rh}^{\text {III }}(\mathrm{ttp}) \mathrm{Me}$ was used (eq 1 and Table 1, entry 2). ${ }^{13}$ A 79% yield of CH_{4} was also detected by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The hydrolysis of $\mathrm{Rh}^{\text {III }}(\mathrm{ttp}) \mathrm{Me}$ to $\mathrm{Rh}^{\text {III }}(\mathrm{ttp}) \mathrm{OH}$ was further ascertained.

To test whether water was the hydrogen source, labeling experiments using $\mathrm{D}_{2} \mathrm{O}$ were carried out. In a benzene- d_{6} solution with excess $\mathrm{D}_{2} \mathrm{O}$ and $10 \mathrm{~mol} \% \mathrm{Rh}^{\mathrm{III}}(\mathrm{ttp}) \mathrm{Me}, \mathrm{PCP}$ was catalytically converted to deuterium-enriched $1-d$ in 64% yield in 3 days (eq 2). ${ }^{1} \mathrm{H}$ NMR analysis of $1-d$ confirmed that the deuterium percentages at the terminal and internal benzylic positions were 45 and 47%, respectively.

[^0]Deuterium incorporation via exchange of $\mathrm{D}_{2} \mathrm{O}$ with the terminal benzylic hydrogens of $\mathbf{1}$ was very minor. As a control experiment, when 1 was heated with $10 \mathrm{~mol} \% \mathrm{Rh}^{\text {III }}(\mathrm{ttp}) \mathrm{Me}$ and excess $\mathrm{D}_{2} \mathrm{O}$ to produce deuterium enriched 1-d', only 8% of the terminal benzylic hydrogens underwent deuterium exchange during a long reaction time of over 3 days (eq 3).

The extensive benzylic H/D exchanges at the internal positions were much faster, as in the more rapid benzylic CHA in $\mathrm{PhCH}_{2} \mathrm{CH}_{3}$ reported by Wayland. ${ }^{14}$ Therefore, water was confirmed to be the hydrogen source for the catalytic hydrogenolysis of PCP to $\mathbf{1}$.

To investigate whether benzylic CHA is an intermediate for benzylic CCA of PCP, ${ }^{15}$ the reactions of PCP with $\mathrm{Rh}^{\text {III }}(\mathrm{ttp}) \mathrm{Cl}$, KOH , and $\mathrm{D}_{2} \mathrm{O}$ in benzene- d_{6} at lower reaction temperatures were closely monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy [Table S1, eq S1, and Figure S1 in the Supporting Information (SI)]. Initially, $\mathrm{Rh}^{\text {III }}(\mathrm{ttp}) \mathrm{Cl}$ was completely consumed to give a 71% yield of $\mathrm{Rh}_{2}{ }_{2}(\mathrm{ttp})_{2}$ only after heating at $60^{\circ} \mathrm{C}$ for 4 days and $120^{\circ} \mathrm{C}$ for 8 days. When the temperature was further raised to $130^{\circ} \mathrm{C}$, benzylic CCA of PCP began to occur slowly, after 1 day affording a 6% yield of dirhodium benzyl 2 (Scheme 2), whose structure was confirmed by an independent synthesis (eq S2). No benzylic CHA products were observed even when the reaction mixture included $\sim 0.4 \mathrm{mM} \mathrm{Rh}^{\mathrm{II}}(\mathrm{ttp})_{2}$, which should be very reactive toward benzylic hydrogens. Moreover, the ratio of the benzylic protons to the aromatic protons of PCP remained unchanged. These observations suggested that benzylic CCA of PCP occurred directly without passing through any CHA intermediate.

To gain further knowledge about the benzylic CCA step of PCP with rhodium porphyrins by kinetic studies, monomeric $\mathrm{Rh}^{\mathrm{II}}(\mathrm{tmp})$ (tmp $=$ tetramesitylporphyrinato dianion) was chosen to react with PCP, avoiding the complication due to the thermal equilibrium of $\mathrm{Rh}^{\mathrm{II}}(\mathrm{ttp})_{2}$ with $\mathrm{Rh}^{\mathrm{II}}(\mathrm{ttp}) .{ }^{16}$ $\mathrm{Rh}^{\mathrm{II}}(\mathrm{tmp})$ reacted smoothly with PCP at $150{ }^{\circ} \mathrm{C}$ for 23 h to give an 85% yield of 3 (eq 4), establishing the high-yielding stoichiometric reaction.

* w.r.t. Rh ${ }^{11}(\mathrm{tmp})$

The kinetic studies of reaction 4 were conducted at $\left[\mathrm{Rh}^{\mathrm{II}}(\mathrm{tmp})\right]=0.24-0.48 \mathrm{mM},[\mathrm{PCP}]=4.8-14.4 \mathrm{mM}$, and $T=140-170{ }^{\circ} \mathrm{C}$ and monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. With at least a 20 -fold excess of PCP, the disappearance of $\mathrm{Rh}^{\mathrm{II}}(\mathrm{tmp})$ exhibited pseudo-second-order kinetics over at least four half-lives (Figure 1). The rate of disappearance of $\mathrm{Rh}^{\mathrm{II}}(\mathrm{tmp})$ increased with increasing [PCP] from 4.8 to 14.4 mM , giving a linear pseudo-first-order kinetic plot (Figure 2).

Figure 1. Second-order kinetic plots for the reactions of $\mathrm{Rh}^{\mathrm{II}}(\operatorname{tmp})$ at various concentrations with 9.6 mM PCP in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $150{ }^{\circ} \mathrm{C}$.

Figure 2. Plot of $k_{\text {obs }}^{\prime}$ against $[\mathrm{PCP}]$ for reactions with $\left[\mathrm{Rh}^{\mathrm{II}}(\mathrm{tmp})\right]=$ 0.24 mM and $[\mathrm{PCP}]=4.8-14.4 \mathrm{mM}$.

The kinetic measurements indicated an overall third-order reaction, second-order in $\mathrm{Rh}^{\mathrm{II}}(\mathrm{tmp})$ and first-order in PCP. Therefore, the rate of reaction can be expressed as rate $=$ $k_{\mathrm{obs}}\left[\mathrm{Rh}^{\mathrm{II}}(\mathrm{tmp})\right]^{2}[\mathrm{PCP}]$.

Analysis of the temperature dependence of the rate constant $\left(140-170^{\circ} \mathrm{C}\right)$ yielded the activation parameters $\Delta H^{\ddagger}=37.9 \pm$ $4.7 \mathrm{kcal} \mathrm{mol}^{-1}, \Delta S^{\ddagger}=38.4 \pm 11.1 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$, and $\Delta G^{\ddagger}=$ $21.7 \pm 4.7 \mathrm{kcal} \mathrm{mol}^{-1}$ (Figure 3). The ΔH^{\ddagger} value agrees very well with that for the thermal ring opening of PCP at $188^{\circ} \mathrm{C}$ measured by Roth et al. $\left(\Delta H^{\ddagger}=37.7 \pm 0.5 \mathrm{kcal} \mathrm{mol}{ }^{-1}\right) .{ }^{17}$ Hence, the benzylic CCA of PCP occurs via carbon-carbon bond homolysis. The positive and large magnitude of ΔS^{\ddagger} suggests a dissociative nature of the transition state. The second-order dependence on $\mathrm{Rh}^{\mathrm{II}}(\mathrm{tmp})$ indicates the possible formation of a compact encounter complex between two $\mathrm{Rh}^{\mathrm{II}}(\mathrm{tmp})$ complexes and a PCP molecule prior to the carboncarbon bond cleavage. ${ }^{18,19}$

On the basis of the above findings, the catalytic cycle shown in Scheme 2 is proposed. $\mathrm{Rh}^{\mathrm{III}}(\mathrm{ttp}) \mathrm{OH}$ is first generated by ligand substitution of $\mathrm{Rh}^{\mathrm{III}}(\mathrm{ttp}) \mathrm{I}$ with KOH^{9} or hydrolysis of $\mathrm{Rh}^{\text {III }}(\mathrm{ttp}) \mathrm{Me}$ with $\mathrm{H}_{2} \mathrm{O} .{ }^{12}$ At $200{ }^{\circ} \mathrm{C}$, $\mathrm{Rh}^{\text {III }}(\mathrm{ttp}) \mathrm{OH}$ is unstable and rapidly decomposes to produce $\mathrm{Rh}^{\mathrm{II}}(\mathrm{ttp})$ and $\mathrm{H}_{2} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}_{2}$ rapidly disproportionates to give $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{O}_{2} \cdot{ }^{20}$ Two molecules of $\mathrm{Rh}^{\mathrm{II}}(\mathrm{ttp})$ combine to form $\mathrm{Rh}^{\mathrm{II}}(\mathrm{ttp})_{2}$ as a nonproductive equilibrium. PCP reacts productively with

Figure 3. Determination of the activation parameters for the reactions of $\mathrm{Rh}^{\mathrm{II}}(\mathrm{tmp})$ with PCP in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $140-170{ }^{\circ} \mathrm{C}$ with $\left[\mathrm{Rh}^{\mathrm{II}}(\mathrm{tmp})\right]=$ 0.24 mM and $[\mathrm{PCP}]=9.6 \mathrm{mM}$.

Scheme 2. Proposed Catalytic Cycle

$\mathrm{Rh}^{\mathrm{II}}(\mathrm{ttp})$ to furnish benzylic CCA with the formation of $\mathbf{2}$. Subsequently, hydrolysis of 2 with $\mathrm{H}_{2} \mathrm{O}$ completes the hydrogenation process to give 1 and regenerates the $\mathrm{Rh}^{\mathrm{II}}(\mathrm{ttp})$ OH catalyst. This process is supported by the hydrolysis of $\mathrm{Rh}^{\text {III }}(\mathrm{ttp}) \mathrm{Bn}$ to give toluene in 66% yield in a model study (eq 5).

In summary, the catalytic carbon-carbon σ-bond activation and hydrogenation of PCP with water has been demonstrated. The hydrogen from water is transferred to the hydrocarbon. Further studies are ongoing.

- ASSOCIATED CONTENT

(5) Supporting Information

Experimental procedures, kinetic data, and ${ }^{1} \mathrm{H}$ NMR and mass spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

ksc@cuhk.edu.hk

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the Direct Grant of The Chinese University of Hong Kong for financial support.

REFERENCES

(1) (a) Goldman, A. S. Nature 2010, 463, 435-436. (b) Gozin, M.; Welsman, A.; Ben-David, Y.; Milstein, D. Nature 1993, 364, 699-701. (c) Jones, W. D. Nature 1993, 364, 676-677.
(2) (a) Shilov, A. E.; Shul'pin, G. B. Chem. Rev. 1997, 97, 28792932. (b) Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H. Acc. Chem. Res. 1995, 28, 154-162.
(3) Rybtchinski, B.; Vigalok, A.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc. 1996, 118, 12406-12415.
(4) (a) Cassar, L.; Eaton, P. E.; Halpern, J. J. Am. Chem. Soc. 1970, 92, 3515-3518. (b) Herbert, D. E.; Gilroy, J. B.; Staubitz, A.; Haddow, M. F. J. Am. Chem. Soc. 2010, 132, 1988-1998. (c) Eisch, J. J.; Gitua, J. N. Organometallics 2007, 26, 778-779.
(5) (a) Murakami, M.; Amii, H.; Shigeto, K.; Ito, Y. J. Am. Chem. Soc. 1996, 118, 8285-8290. (b) Murakami, M.; Tsuruta, T.; Ito, Y. Angew. Chem., Int. Ed. 2000, 39, 2484-2486. (c) Murakami, M.; Itahashi, T.; Ito, Y. J. Am. Chem. Soc. 2002, 124, 13976-13977.
(6) (a) Jun, C.-H.; Lee, H.; Lim, S.-G. J. Am. Chem. Soc. 2001, 123, 751-752. (b) Jun, C.-H.; Lee, D.-Y.; Lee, H.; Hong, J.-B. Angew. Chem., Int. Ed. 2000, 39, 3070-3072. (c) Jun, C.-H.; Lee, H. J. Am. Chem. Soc. 1999, 121, 880-881.
(7) (a) Wilsily, A.; Nguyen, Y.; Fillion, E. J. Am. Chem. Soc. 2009, 131, 15606-15607. (b) Liou, S.-Y.; van der Boom, M. E.; Milstein, D. Chem. Commun. 1998, 687-688. (c) Miller, B.; Lewis, L. J. Org. Chem. 1974, 39, 2605-2607.
(8) Chan, Y. W.; Chan, K. S. J. Am. Chem. Soc. 2010, 132, 69206922.
(9) Choi, K. S.; Lai, T. H.; Lee, S. Y.; Chan, K. S. Organometallics 2011, 30, 2633-2635.
(10) The catalytic hydrogenation was retarded in a control experiment performed under light conditions. Therefore, photochemical carbon-carbon bond cleavage does not occur. For details, see the SI.
(11) (a) Wayland, B. B.; Ba, J.; Sherry, A. E. J. Am. Chem. Soc. 1991, 113, 5305-5311. (b) Chan, K. S.; Chiu, P. F.; Choi, K. S. Organometallics 2007, 26, 1117-1119.
(12) (a) Fung, H. S.; Li, B. Z.; Chan, K. S. Organometallics 2012, 31, 570-579. (b) Fung, H. S.; Li, B. Z.; Chan, K. S. Organometallics 2010, 29, 4421-4423.
(13) In a control experiment without any rhodium porphyrin, PCP did not react with $\mathrm{H}_{2} \mathrm{O}$ at all. For details, see the SI.
(14) Del Rossi, K. J.; Wayland, B. B. J. Am. Chem. Soc. 1985, 107, 7941-7944.
(15) Rybtchinski, B.; Milstein, D. Angew. Chem., Int. Ed. 1999, 38, 870-883.
(16) (a) Wayland, B. B.; Sherry, A. E.; Poszmik, G.; Bunn, A. G. J. Am. Chem. Soc. 1992, 114, 1673-1681. (b) Wayland, B. B. Polyhedron 1988, 7, 1545-1558.
(17) Roth, W. R.; Hopf, H.; de Meijere, A.; Hunold, F.; Börner, S.; Neumann, M.; Wasser, T.; Szurowski, J.; Mlynek, C. Liebigs Ann. 1996, 2141-2154.
(18) Alternatively, the thermolysis of the benzylic $\mathrm{C}-\mathrm{C}$ bond of PCP generates the bisbenzylic radical.
(19) For examples of four-centered transition states, see: (a) Sherry, A. E.; Wayland, B. B. J. Am. Chem. Soc. 1990, 112, 1259-1261. (b) Wayland, B. B.; Ba, S.; Sherry, A. E. J. Am. Chem. Soc. 1991, 113, 5305-5311. (c) Wayland, B. B.; Ba, S.; Sherry, A. E. Inorg. Chem.

1992, 31, 148-150. (d) Cui, W.; Zhang, X. P.; Wayland, B. B. J. Am.
Chem. Soc. 2003, 125, 4994-4995. (e) Cui, W.; Wayland, B. B. J. Am.
Chem. Soc. 2004, 126, 8266-8274.
(20) (a) Walling, C. Acc. Chem. Res. 1975, 8, 125-131. (b) Kato, S.; Ueno, T.; Fukuzumi, S.; Watanabe, Y. J. Biol. Chem. 2004, 279, 52376-52381. (c) Kumar, A.; McCluskey, R. J. Ind. Eng. Chem. Res. 1987, 26, 1323-1329. (d) Harned, H. S. J. Am. Chem. Soc. 1918, 40, 1461-1481.

[^0]: Received: May 16, 2012
 Published: June 28, 2012

